
No-Cost ZFS
On Low-Cost Hardware

Trever Nightingale
Senior Systems Analyst

NERSC Server Team

Why Use ZFS?

Motivation

Part One

Task: New IMAP Server

•  several terabytes of email highly available over long term

•  near real time replica server standing by

Tools budgeted for the task:
•  2U, 8 drive bay commodity "white box" hardware

•  Open source no cost software

Order the commodity hardware
Quote from our usual vendor

Note: 64 bit and plenty of RAM

The hardware arrives

What you have...

3ware commodity hardware RAID card inside

What Do You Do With
Those 6 x 1 TB Discs?

300 GB 1 TB 1 TB 1 TB

300 GB 1 TB 1 TB 1 TB

mirrors for OS

Try Business as usual

One possibility…

Hardware RAID all the drives

now you have...

3ware commodity hardware RAID card inside

300 GB 1 TB 1 TB 1 TB

300 GB 1 TB 1 TB 1 TB

mirrors for OS

= RAID 5

= Hot Spare Email goes on RAID 5

This gives you ~4 TB LUN for your
email filesystem

Note: all email must collect on one filesystem

So are we done?

Not yet, we need to put a filesystem
on that ~4 TB LUN

Since this is business as usual, let's
assume the 1 TB drives in our LUN
behave like usual

Can we create a 4 TB filesystem with our
free software?

Not if it's a FreeBSD UFS filesystem

•  Michael Lucas, Absolute FreeBSD author:
“In my opinion, soft updates are suitable for
partitions of less than 80 GB or so.”

•  Snapshots making systems unresponsive

•  Max UFS filesystem size?

(Journaled soft updates for UFS not available yet)

Our existing IMAP was FreeBSD

Let's try switching to Linux

Business as usual on Linux is: ext3

Will ext3 scale to 4 TB?

Officially yes, but are we enthusiastic?

•  My enthusiasm and confidence is not high.
ext3 not optimally designed for filesystems
this large

•  We are approaching supported limits:
8 TB CentOS 4, 16TB CentOS 5

For the boss's email, I'd like to feel more
confident in my filesystem technology at 4 TB

Filesystem Scaling Issues

And what about our assumption about
our hardware?

Do those discs behave like previous
generation discs?

What about those large 1 TB discs?

Data integrity problems

•  Bit-rot: magnetic properties of media silently
changed or damaged

•  Bugs in drive firmware, RAID controller:
misdirected writes and phantom writes

•  Data transfer noise (UTP, SATA, FC)

•  OS software bugs: drivers and filesystem code
itself

•  New big drives means the disc
data integrity problem is
becoming more significant

•  Disc data integrity has always
been at least a small problem

Bigger drives behave differently…

…per drive error rate is different

300 GB 1 TB
A B

More likely to get an error reading
B end-to-end than reading A end-to-end

Note: there is no time element here

Business as usual is
looking problematic
•  The problems with the newly available huge

discs are not widely known and appreciated
among sys admin circles (and beyond)

•  It looks like we are arriving at someplace
new on the technology curve

We Need A New
Approach
•  ZFS has end-to-end data integrity checking,

well designed for protection against the
potential errors with larger hard drives

•  ZFS is free and production ready in FreeBSD

ZFS's Data Integrity Technology

•  Maintains checksums for all on disc blocks

•  Checksums are kept separate from
corresponding blocks

•  Checksums stored in a block's pointer structure
(except uberblocks which have no parent ptrs)

•  Before using a block, ZFS calculates its checksum
and verifies it against the stored checksum in
pointer

ZFS detected & endured this
•  Flipped bits at random offsets in 9 different

classes of disc blocks using a pseudo-driver
interposed between ZFS virtual device and disc
driver

•  Corrupted metadata blocks, then did mounts of
unmounted and remounts of mounted
filesystems

•  Corrupted data and directory blocks, did a read
file or a create file in a directory

See “End-to-end Data Integrity for File Systems: A ZFS Case Study”, University of Wisconsin-Madison

•  ZFS demonstrated to protect against the data
integrity problems of huge discs

•  ZFS is designed for large filesystems (it’s 128 bit):
Maximum filesystem size is 256 quadrillion
zettabytes (1 zettabyte = 270)

•  ZFS code base itself is well regarded and in
production ~6 years (in Solaris since June 2006)

ZFS Strengths

FreeBSD 7.0, 7.1, 7.2, 7.3, 8.0, 8.1, 8.2

ZFS declared production ready

where we adopted

ZFS experimental

ZFS port to FreeBSD declared production ready

Why ZFS?

Motivation

It looks riskier to not try ZFS than to try it

1. Proven/designed to scale to large filesystems
2. On commodity hardware, you need ZFS's data integrity

at today's disc sizes
3.  tomorrow's disc sizes increase the data integrity need

Argument Summary:

Deploying ZFS

How did it go?

Part Two

now you have...

3ware commodity hardware RAID card inside

300 GB 1 TB 1 TB 1 TB

300 GB 1 TB 1 TB 1 TB

mirrors for OS

= RAIDZ

= Hot Spare Email goes on RAIDZ

RAIDZ is not hardware RAID
•  3ware RAID card only mirroring the two OS drives

•  3ware RAID card is just exporting the six
remaining 1 TB drives to the OS (JBOD)

RAIDZ is built into ZFS
•  ZFS prefers raw discs to do its magic

•  RAIDZ has no RAID5 write hole

•  Resilvering uses checksums (does not blindly copy
blocks underneath other layers)

•  Software RAID that is actually preferable for ease of
administration compared to hardware RAID!
(Software RAID can be complex)

RAID5 Write Hole

Lose power after writing a data block but before
writing the corresponding parity block 
data and parity for that stripe are inconsistent

Result: RAID reconstruction in event of disc
failure will generate garbage (silently)

ZFS RAIDZ Solution to write hole

Every write is a full-stripe write (no partial writes).
Combined with COW transactions 
no write hole

(Entire RAIDZ implementation: 599 lines of code)

Installation & Configuration

su -

zpool create -O compression=lzjb z raidz da1 da2 da3 da4 da5 spare da6

DONE

imap1 # df –hT

Filesystem Type Size Used Avail Capacity Mounted on

/dev/da0s1a ufs 262G 4.1G 237G 2% /

z zfs 3.5T 31k 3.5T 0% /z

That's It!

Though it took awhile to believe it…

…and it will take awhile to get used to things

Part Three

ZFS Features

Yes it's love

ZFS integration

•  Notice how everything was done for you
no partitioning, labeling, fstab, newfs, creating volumes etc.

•  No sizing or preallocation (dynamic allocation)

•  Two commands: zfs and zpool

Transactional

•  Always consistent on disc (COW)

•  Not a journaling filesystem

•  No fsck (and they refuse to create one)

•  Not a journal for consistency:
ZIL log replay is NOT about re-establishing consistency,
unlike journaled filesystems. ZFS pools always come up in a
consistent state, but any ZIL records can be incorporated into
a new consistent state via replay.

•  Supports synchronous write semantics separately from rest of
I/O pipeline which allows for optimized overall and
synchronous performance (database servers, NFS servers)

•  Can easily be put on SSD or low latency media, or separate
spindles in your pool

Separate ZIL (ZFS Intent Log)

Commodity Database server
3ware commodity hardware RAID card inside for OS mirror, rest is ZFS

2 TB 2 TB 2 TB 2 TB

 2 TB 2 TB 2 TB 2 TB

 2 TB 2 TB 2 TB 2 TB

 2 TB 2 TB 2 TB 2 TB

 300 GB 2 TB 2 TB 2 TB

 300 GB 2 TB 2 TB 2 TB

= RAIDZ2
= ZFS mirror for ZIL
= OS mirror

Everything is fast

•  Pool creation, filesystem creation are
instantaneous!

•  Makes heavy use of memory (ARC) and state of
the art in filesystem tech for performance

OMG, snapshots!

•  Free. Absolutely zero performance impact

•  264 per filesystem
(by comparison, UFS max. is 20)

•  zfs rollback (undo command for your servers!)

•  Tape is now truly only for a total disaster (good
riddance to 99% of all tape restores)

Snapshots in action

"portland"

imap1 # df -hT

Filesystem Type Size Used Avail Capacity Mounted
on

/dev/da0s1a ufs 262G 4.1G 237G 2% /

z zfs 3.5T 31k 3.5T 0% /z

ZFS filesystem hierarchy
(or namespace)

System filesystem hierarchy
(or namespace)

"Z space"

Within the ZFS heirarchy, all filesystems go under the root filesystem

z/data/ z/portland/ z/whatever/

All go under root in "Z space", but can mount anywhere in filesystem:

z/portland/usr/ports /usr/ports

z/data /data

single ZFS pool

You can not do this:

single ZFS pool

usr/ports /usr/ports

data /data

You can not have this:

Create A Portland Tree

single ZFS pool

Create "portland”

export Z=“zfs create –p –o compression=lzj”

$Z z/portland/usr/local

$Z z/portland/usr/ports/distfiles

$Z z/portland/var/db/pkg

$Z z/portland/var/db/ports

$Z z/portland/var/db/portsnap

mkdir /usr/ports

zfs set mountpoint=/usr/local z/portland/usr/local

zfs set mountpoint=/usr/ports z/portland/usr/ports

zfs set mountpoint=/var/db/ports z/portland/var/db/ports

zfs set mountpoint=/var/db/portsnap z/portland/var/db/portsnap

zfs set mountpoint=/var/db/pkg z/portland/var/db/pkg

(264 filesystems per pool)

Portland

imap1# df –hT | grep portland

z/portland/usr/local

/usr/local

z/portland/usr/ports

/usr/ports

z/portland/usr/ports/distfiles
/usr/ports/distfiles

z/portland/var/db/pkg

/var/db/pkg

z/portland/var/db/ports

/var/db/ports

z/portland/var/db/portsnap

/var/db/portsnap

z/portland

/z/portland

z/portland/usr

/z/portland/usr

z/portland/var

/z/portland/var

z/portland/var/db

/z/portland/var/db

Portland in action

zfs snapshot -r z/portland@base_install

zfs rollback -r z/portland@base_install

•  atomic down the entire heirarchy (-r)

•  Portland will likely stay even with an all ZFS system (even
with ZFS root)

Upgrade software stack. Upgrade breaks LDAP. Do:

ZFS State of the art

Remote

replication DeDuplication

Transactional Compression

Aggregation

Snapshots Clones Adaptive

replacement

cache

Deadline

scheduling

128 bit

Ditto

blocks

•  248 — Number of entries in any individual directory
•  16 EB — Maximum size of a single file
•  16 EB — Maximum size of any attribute
•  256 ZB (278 bytes) — Maximum size of any zpool
•  256 — Number of attributes of a file (constrained to 248 for the number of files in a ZFS file system)
•  264 — Number of devices in any zpool
•  264 — Number of zpools in a system
•  264 — Number of file systems in a zpool

What they say about ZFS

"All your storage problems solved"

"... we predict you will enjoy working
with it. There is little doubt that the
system will be widely emulated over
the next decade. The open question
is how long we'll have to wait to get
ZFS-style features on other systems."

One more thing...

That 3.5 TB filesystem?

It holds 7 TB of email (twice as much!)

ZFS has built in compression
Faster with compression (cpu is faster than disc)

7 TB of highly reliable disc space in a standard (2 U)
State of the art performance
All for the low price of $6k

ZFS Lessons Learned

Part Four

ZFS send/receive

ZFS’s native ability to serialize the filesystem
Pipe filesystem from one place to another

Two hopes for NERSC server team:
1)  Backup
2)  remote mirroring (IMAP standby)

Backing up ZFS at NERSC

for filesystem in `zfs list -H -r -o name`

do

filesystem="$filesystem@00daysago” 

/usr/bin/ftp hpss 

put "| zfs send $filesystem | gzip -9” $HPSSFILENAME

done

Outline of logic for a “full” backup

Backing up ZFS at NERSC

•  can have full (with or without history- i.e. snapshots) and
incrementals (but snapshots are already on disc)

•  more filesystems = greater granularity for backups +
smaller backup files lowers chance of corrupt backup files

•  zfs send is verifying checksums as it reads

•  SUN/Oracle: zfs send not a backup solution
(they say this because can’t restore individual files)

•  NERSC: ZFS native backups just as good as UFS dump

Backups went well, work on par with rest of our
backups

How about mirroring?

ZFS send/receive

IMAP mirroring requirements

•  Create a standby mirror IMAP server

•  Mirroring can be non-realtime

•  Some data loss acceptable

Eg. sync every 30 minutes

zfs send | ssh mirror zfs receive

•  When incremental updates are interrupted, must
re-initialize mirror from beginning
(i.e. loss of mirror until re-initialization complete)

Bug? Not doing correctly? Unanswered

•  SLOW
40 GB taking ~10 minutes for incremental

ZFS send/receive

rsync was the better solution

•  Mirror has it’s own history

•  Filesystem additions/deletions and structural
changes not propagated

Caveats…unlike ZFS send/receive

Remote mirroring disappointing

(pace blog/web)

ZFS send/receive

Going forward…

No hardware RAID card inside*

300/1,2,3 etc.
GB/TB 1,2,3 etc. TB 1,2,3 etc. TB 1,2,3 etc. TB

300/1,2,3 etc.
GB/TB 1,2,3 etc. TB 1,2,3 etc. TB 1,2,3 etc. TB

geom/zfs mirrors for OS

= RAIDZ2

Data & Portland goes on RAIDZ2

* At least two reasons (driver/zfs.ko problems, what is it doing?)

When might we want
RAIDZ3? Duplication?

Going forward…

Did we get the commodity hardware right?

Eg. always honors write barrier?

“Catastrophically destroyed pool”
Jeff Bonwick, Sun Fellow, ZFS team lead

Avoid

Today at NERSC, ZFS in production

•  imap1 & 2  6 months online

•  new ldap infrastructure  1.5 months online
master, 3 replicas

No incidents to date (5 servers)

12 more on deck!

•  User DB servers (2)

•  Central logging and analysis servers (3)

•  Login servers (2)

•  Mailman server (1)

•  Mail exchangers (2)

•  NERSC internal DB servers (2)

References

1.  http://en.wikipedia.org/wiki/ZFS

2.  ZFS – The Last Word In Filesystems, Jeff Bonwick, Bill Moore, http://
hub.opensolaris.org/bin/download/Community+Group+zfs/docs/zfslast.pdf

3.  End-to-end Data Integrity for File Systems: A ZFS Case Study, Yupu Zhang, Abhishek
Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Computer Sciences
Department, University of Wisconsin-Madison, http://www.cs.wisc.edu/wind/Publications/
zfs-corruption-fast10.pdf

4.  ZFS On-Disk Specification, http://hub.opensolaris.org/bin/download/Community+Group
+zfs/docs/ondiskformat0822.pdf

5.  ZFS Source Tour, http://hub.opensolaris.org/bin/view/Community+Group+zfs/source

6.  ZFS: The Next Word, Jeff Bonwick, Bill Moore, http://www.youtube.com/watch?
v=Spd5qwGz35k

References

7.  ZFS in the Trenches, Ben Rockwood, http://wikis.sun.com/download/attachments/63226450/
ZFSintheTrenches.pdf

8.  Jeff Bonwick’s blog, feed://blogs.oracle.com/bonwick/en_US/feed/entries/rss?cat=%2FZFS

9.  ZFS, copies, and data protection, Richard Elling's Weblog, http://blogs.oracle.com/relling/entry/
zfs_copies_and_data_protection

10.  Why RAID 5 stops working in 2009, Robin Harris, http://www.zdnet.com/blog/storage/why-raid-5-stops-
working-in-2009/162

11.  An Analysis of Data Corruption in the Storage Stack, Lakshmi N. Bairavasundaram∗ , Garth R.
Goodson†, Bianca Schroeder‡ Andrea C. Arpaci-Dusseau∗ , Remzi H. Arpaci-Dusseau∗ , ∗ University
of Wisconsin-Madison † Network Appliance, Inc. ‡ University of Toronto {laksh, dusseau,
remzi}@cs.wisc.edu, garth.goodson@netapp.com, bianca@cs.toronto.edu, http://www.cs.toronto.edu/
~bianca/papers/fast08.pdf

12.  Triple-Parity RAID and Beyond, ADAM LEVENTHAL, http://portal.acm.org/ft_gateway.cfm?
id=1670144&type=pdf

